ordered integral domain

Definition from Wiktionary, the free dictionary
Jump to: navigation, search

English[edit]

Noun[edit]

ordered integral domain (plural ordered integral domains)

  1. (algebra) An integral domain which has a subset whose elements are said to be "positive", such that this subset is closed under addition, closed under multiplication, and all elements of the integral domain satisfy a law of trichotomy; namely, that either that element is in the said subset, or it is the zero (additive identity), or its product with −1 (the additive inverse of the multiplicative identity) belongs to the said subset.

Hyponyms[edit]