quotient ring

From Wiktionary, the free dictionary
Jump to navigation Jump to search

English

[edit]
English Wikipedia has an article on:
Wikipedia

Noun

[edit]

quotient ring (plural quotient rings)

  1. (algebra, ring theory) For a given ring R and ideal I contained in R, another ring, denoted R / I, whose elements are the cosets of I in R.
    • 1976, Kenneth Goodearl, Ring Theory: Nonsingular Rings and Modules, CRC Press, page 39:
      The third section covers a construct similar to the ring S°R — the maximal quotient ring, which exists for any ring. (When R is nonsingular, the maximal quotient ring is exactly S°R.) Finally, Section D provides an answer to the question of which right and left nonsingular rings have coinciding maximal right and left quotient rings.
    • 2006, Peter A. Linnell, “Noncommutative localization in group rings”, in Andrew Ranicki, editor, Noncommutative Localization in Algebra and Topology, Cambridge University Press, page 42:
      On the other hand if already every element of R is either invertible or a zerodivisor, then R is its own classical quotient ring.
    • 2012, Oleg A. Logachev, A. A. Salnikov, V. V. Yashchenko, translated by Svetla Nikova, Boolean Functions in Coding Theory and Cryptography, American Mathematical Society, page 10:
      2. An ideal P of the ring R is prime if and only if the quotient ring R/P is a domain.

Synonyms

[edit]

Hyponyms

[edit]

Derived terms

[edit]

Translations

[edit]

See also

[edit]

Further reading

[edit]