# proper value

## English[edit]

### Noun[edit]

**proper value** (*plural* **proper values**)

- (dated, linear algebra) An eigenvalue.
**1961**[Oxford University Press], Sterling K. Berberian,*Introduction to Hilbert Space*, American Mathematical Society (AMS Chelsea), 1999, Reprint, page 178,- In this terminology,
*Theorem 1*asserts that every non-zero**proper value**of a CC-operator^{[completely continuous operator]}has finite multiplicity. This result is not always helpful, for there exist CC-operators having no**proper values**at all:

- In this terminology,
**1962**, A. R. Amir-Moéz, A. L. Fass,*Elements of Linear Space*, Pergamon Press, page 134,- Thus any
**proper value**of**AA***is a**proper value**of**A*A**.

- Thus any
**2010**, F. Takens, A Vanderbauwhede,*Local invariant manifolds and normal forms*, H. Broer, F. Takens, B. Hasselblatt (editors),*Handbook of Dynamical Systems, Volume 3*, Elsevier (North-Holland), page 106,- The
**proper values**of this linear mapping are:- – the proper values of
*L*; - – for each
**proper value**α of*L|E*and^{c}**proper value**β of*L|E*, the^{u}**proper value**α/β — from the assumptions it follows that this latter collection of**proper values**consists of contracting**proper values**only.

- – the proper values of

- The

#### Usage notes[edit]

Formerly the standard term in English; replaced by *eigenvalue* during the course of the 20th century.